TIG Influence Maximisation Challenge

TIG Labs
August, 2025

1 Impact: Practical and Scientific

Understanding how ideas, behaviors, and innovations spread through social networks is
a classic challenge, studied across fields from epidemiology to economics. The problem
of influence maximization, formally introduced to optimize viral marketing campaigns,
tackles this challenge directly by asking: who are the most influential individuals in
a network? Identifying this small set of key nodes can trigger a large-scale cascade
of adoption, whether it’s for a new product, a political message, or a public health
initiative[l].

The computational challenge of influence maximization is amplified by the scale
of modern networks, which often contain millions of users and billions of connections,
rendering exhaustive search methods intractable. This has necessitated the develop-
ment of scalable and theoretically-grounded algorithms that combine techniques from
graph theory, probability, and combinatorial optimization [I]. Consequently, influence
maximization has become a foundational problem in computational social science and
network science. Its applications shape crucial strategies in everything from viral mar-
keting and political campaigning to epidemiological modeling and the dissemination of
critical public health information. Despite significant progress, the field continues to
evolve, with ongoing research driven by the need for algorithms that can handle the
massive scale and dynamic nature of real-world networks.

2 Problem Description and Formulation

Influence maximization is the problem of selecting a set of initial “seed” users in a so-
cial network to maximize the expected spread of influence (e.g., word-of-mouth effect)
through the network [1]. Formally, we are given a directed graph G = (V, E) repre-
senting a social network, where each node corresponds to a user and a directed edge
(1,7) € E indicates that user i can influence user j (for example, via a “follow” rela-
tionship). A stochastic diffusion process (influence model) runs on this graph, where
active users may activate their neighbors over time.

In the widely used Independent Cascade (IC) model, each directed edge e = (1, j)
is associated with an activation probability p. € [0,1] (commonly p. = 0.01 in exper-
iments). If user ¢ becomes active, then for each outgoing edge (7,j), user j becomes
active with probability p., independently of other neighbors. Once a user is activated,
they remain active, and the process continues until no further activations occur.

At time t = 0, we may select an initial seed set S C V subject to a resource
constraint. In the standard formulation, this is a cardinality constraint:

S| <k,

where k is the budget for the number of seeds (e.g., & = 50 or k = 100). The objective
is to choose S that maximizes the expected number of activated users at the end of the
diffusion process. Letting f(S) denote the expected final spread from seed set S, the
optimization problem is:

S* = arg‘rgé%f(S).

This is an NP-hard combinatorial optimization problem even under simple diffusion
models such as IC or the Linear Threshold (LT) model [1].

1

Knapsack Constraint Variant

In many real-world scenarios, activating a user has an associated cost, such as the
monetary incentive required to participate in a marketing campaign. Let w; > 0 denote
the cost (or weight) of selecting user ¢« € V', and let W > 0 be the total available budget.
The seed set S must then satisfy the knapsack constraint:

i€
The optimization problem becomes:

S*=arg _max f(9).

Yies wisW

This generalization is strictly harder than the cardinality case: the classic greedy al-
gorithm for submodular maximization no longer guarantees a constant-factor approx-
imation, and more sophisticated algorithms are required [2, B]. The knapsack variant
better reflects industrial settings where resources are limited and influencer costs are
heterogeneous, providing a richer and more challenging benchmark for algorithm de-
sign. Weights can be assigned in various ways: uniformly at random, from a power-law
distribution, or adversarially proportional to degree to mislead degree-based and greedy
heuristics.

The total available budget is usually set as a fraction of the total weight. For

example,
1
W= g2

The paper by Amanatidis et. al [4] considers a fixed budget of 10% or 15% of the total
weight of the network, as well as testing over a varying budget ranging from 1% to 10%
and up to 30%.

3 Baseline Algorithms

The most widely known approach for influence maximization is the greedy algorithm.
Since f(.S) is monotone and submodular under both the IC and LT models, the greedy
algorithm yields a (1 — 1/e)-approximation for the cardinality-constrained version [3]
I]. Tt iteratively selects the node with the highest marginal gain until the budget is
exhausted.

Lazy Evaluation. To speed up greedy, a priority queue can store upper bounds on
marginal gains. At each iteration, the element with the highest bound is evaluated;
if its actual marginal gain still leads, it is selected, otherwise it is reinserted with the
updated bound. This often reduces computation by an order of magnitude.

Simpler Heuristics. Degree-based selection (choosing top-k out-degree nodes) re-
quires no influence simulation and is extremely fast, though typically less effective than
greedy.

These baselines were proposed for the cardinality constraint version

4 Random Instance Generation

Each instance consists of a synthetic social network G together with influence-model
parameters. Real-world social networks often exhibit power-law degree distributions,
small-world properties, and community structure. Random graph models capable
of replicating these properties—such as the R-MAT model [6]—are recommended.
NVIDIA’s CUDA-based syngen_pyt and RAPIDS cuGraph both support R-MAT gen-
eration and are GPU-friendly options.

R-MAT parameters (cuGraph). To instantiate R-MAT in cuGraph, the following
parameters must be set.

e Graph size.

— scale (s): number of vertices n = 2°. Controls instance size.

— num_edges (m) or edge_factor (f): total edges m = f - n (choose one). f
sets average out-degree.

— edge_factor for Graph 500 benchmark is f = 16 [7]

Initiator probabilities.
— a, b, c (withd =1—a—b—¢): quadrant probabilities for the Kronecker
initiator; control skew/community structure.

— Typical default: a = 0.57, b = 0.19, ¢ = 0.19, d = 0.05 used by the Graph
500 benchmark.

— Is this setting being visible to benchmarkers a problem?

Directionality and symmetry.

— directed: True for directed graphs (natural for IC)

Vertex labeling and reproducibility.

— scramble vertex_ids: randomize labels to eliminate quadrant locality ar-
tifacts (recommended: True).

— seed: RNG seed for reproducibility (set per instance).

Quality controls.
— allow_self loops / allowmulti_edges: whether to keep or drop self-loops
/ parallel edges (recommended: drop for IM benchmarks).

— renumber: relabel vertices to a contiguous range if needed by downstream
kernels.

Execution mode.

— mg: multi-GPU (True) vs single-GPU (False); choose True for largest tiers.

Optional edge weights.

— generate weights: if True, attach weights (e.g., uniform or power-law) for
weighted variants; otherwise generate an unweighted topology and set 1C
probabilities separately.

Instance metadata and post-processing. After generation:

1. Assign IC parameters: set p. = p (uniform) or sample p, i.i.d. from a chosen
distribution (e.g., U(0, pmax)). Store p (or distribution) as instance metadata.

2. Knapsack variant (optional): sample node costs w; (e.g., uniform, power-law,
or degree-proportional) and set a budget W so the optimal seed set size is typically
50-100.

Example (Python/cuGraph sketch).

import cugraph as cg

G = cg.generators.rmat(

scale=22, # n = 2%%x22
num_edges=n*16, # edge_factor = 16
a=0.57, b=0.19, ¢c=0.19, #d=1-a-b-c

directed=True,

scramble_vertex_ids=True,

allow_self_loops=False,

seed=42,

mg=True # multi-GPU for largest tiers
)

downstream: set IC p=0.01, run Monte Carlo evaluators, etc.

These settings make instance generation deterministic (via seed), scalable (via
scale, edge factor, mg), and tunable (via a,b, c,d) while keeping the influence pa-
rameters orthogonal to topology.

5 Difficulty Parameters

e the number of vertices n grows w.r.t. difficulty.

e the size of seed sets k is chosen from fixed possible values, say k = 50 or k = 100
(same as [8]) or for knapsack variant max weight is set as a fraction of the total
weight (as in [4])

e use the IC model with fixed uniform parameter p = 0.01 (same as [§]). This
is because (i) it can be specified with a single scalar parameter; (ii) it simpli-
fies Monte Carlo implementation (see the next section); and (iii) it is the most
common experiment setting in the literature.

e A better_than_baseline parameter. This is the percentage the influence spread of
a solution seed set, f(S), is better than the spread of the baseline seed set, f(.S).

f(5) = f(50)
f(S0)

S is a valid solution if the following criteria is met:

better_than_baseline =

f(S) > (better_than_ baseline + 1) x f(Sp)

6 Solution Verification

Asymmetry exists between finding a solution and solution verification in influence max-
imization. Finding the optimal seed set is NP-hard[1].

In contrast, verifying the quality of a given seed set S is far more tractable. In the
Independent Cascade (IC) model, each edge e = (u,v) is associated with an activation
probability p.. Once activated, nodes remain active until the diffusion terminates. This
stochastic process can be equivalently viewed as sampling a random subgraph G’ of G
in which each edge e is retained independently with probability p.. For a fixed seed set
S, the influence spread f(S) is the expected size of the set I'c/(.S) of vertices reachable
from S in G":

f(8) =Ee [T (S]]
Since enumerating all possible G’ is infeasible for large networks, we approximate
f(S) via Monte Carlo (MC) simulation:

f8) = 53 e (S).

4

where G, ...,Gg are independent samples from the IC process. Each computation
[, (S) can be performed in parallel, enabling scalability to large graphs.

Monte Carlo Properties. The IC model is inherently probabilistic, and MC simu-
lation is a natural estimator for f(95):

e Exact computation requires enumerating all activation sequences, which is expo-
nential in the number of edges.

e MC converges to the true f(S) as R — oo, with variance decreasing as O(1/v/R).

e Larger R yields more accurate estimates but at higher computational cost; in
practice, R is chosen to balance accuracy and runtime.

Practical Parameters. The original work by Kempe et al. [1] suggests R ~ 10,000
for stable evaluations on medium-sized networks. For very large graphs, smaller R
may suffice if results are averaged over multiple independent verification runs. Since
MC trials are parallelisable, GPU or distributed implementations can achieve high
throughput, ensuring that verification remains significantly faster than the initial seed
set search.

References

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 137-146, 2003.

[2] M. Sviridenko. A note on maximizing a submodular set function subject to a
knapsack constraint. Operations Research Letters, 32(1):41-43, 2004.

[3] A. Badanidiyuru and J. Vondrék. Fast algorithms for maximizing submodular func-
tions. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1497-1514, 2014.

[4] Georgios Amanatidis, Federico Fusco, Philip Lazos, Stefano Leonardi, and Rebecca
Reiffenhauser. Fast adaptive non-monotone submodular maximization subject to a
knapsack constraint. Advances in neural information processing systems, 33:16903—
16915, 2020.

[5] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions - I. Mathematical Programming, 14(1):265—
294, 1978.

[6] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: a recursive model for graph
mining. In Proceedings of the 2004 SIAM International Conference on Data Mining,
pages 442-446. STAM, 2004.

[7] Graph 500 Steering Committee. Graph 500 benchmark specification. https://
graph500.org/7page_id=12, 2017. Accessed: 2025-08-14.

[8] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks.
In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 199-208, 2009.

https://graph500.org/?page_id=12
https://graph500.org/?page_id=12

	Impact: Practical and Scientific
	Problem Description and Formulation
	Baseline Algorithms
	Random Instance Generation
	Difficulty Parameters
	Solution Verification

