TIG CUR Decomposition Challenge

TIG Labs
January, 2026

1 Introduction

In the era of big data, analysts and practitioners routinely work with matrices con-
taining tens or even hundreds of thousands of rows and columns. This scale is com-
putationally taxing; however, the data can contain redundancy. Isolating the informa-
tive low-dimensional structure has therefore become a critical first step in any analy-
sis. Matrix factorizations-——and, in particular, low-rank decompositions and low-rank
approximation-—sit at the heart of modern data science and numerical analysis, pro-
viding the theoretical backbone for everything from principal-component analysis and
recommender systems to fast solvers in scientific computing. Within this landscape,
CUR approximations have gained popularity because they preserve the actual rows
and columns of the original matrix, yielding interpretable, sparsity-aware low rank ap-
proximations. CUR approximations have been used in a variety of areas including
genetic data [I], imaging [2], and recommender systems [3].

2 Problem Description

Given an m X n data matrix A, a low-rank CUR approzximation approximates A by
A ~ CUR,
where
e (' € R™*¢ contains ¢ actual columns of A;
e R € R™" contains r actual rows of A;
o U € R¥" is called the linking matrix.
The rank of the CUR approximation is the rank of CUR.

3 The TIG Challenge

Currently there are constants [; which still need to be fixed.

The TIG version of the CUR approximation problem is summarised in three steps:

e Step 1. Generating. Given the difficulty parameters m,n (outlined in Section
a rank k is fixed as k = |min{m,n}/2], [; matrices A;,... A, are generated
(by the procedure outlined in Section , they are all rank k.

e Step 2. Solving. Three target ranks are chosen as target_ranks = [%, %, ﬁ] The

TIG framework loops over all [; matrices and all target_ranks, at each iteration
i€ {l...,l}, target_rank € target_ranks the Innovators submission algorithm is
called :

CUR; target rank < Innovator_Submission(A;, target_rank)

returning a CUR approximation of A; with at most target_rank columns and
target_rank rows.



e Step 3. Verification. For each i € {1,2,...,[;}, we score the CUR approxima-
tion (with rank target_rank) as

/{”Az - SVDi,targetjankHF - HAz - CURi,target,rankHF
(/'i - 1>||A’L - SVDi,target,rank”F

where SV D; target rank 15 the target_rank SVD approximation to A;. Note that this
is of the form

baseline — solution

(1)

with baseline = k-optimal. This a natural way to asses the quality of the solution,
if it is optimal we get a score of 1, if the solution is the same as the baseline we
get a score of 0. We will need to calibrate x > 0.

baseline — optimal

We take the geometric mean of the scores

1/3
H KJHAz - SVDi,target,rankHF - ||Az - CURi,target,rankHF
(’i - 1)||Az - SVDi,target,rankHF ’

geom._mean; = (

target_rank

We used geometric means over the target ranks since we note that the relative
error increases as the target rank is increased. The geometric means are then
averaged for the final quality score of the instance :

l1

quality = T ; geom_mean, (2)

The asymmetric nature of the verification is discussed in Section [6]

4 Random Instance Generation

TIGs instance generation procedure generates matrices in R”*"™ with low k-rank struc-
ture. It does this by constructing the matrices through a k-rank SVD decomposition.

For a single instance of the TIG CUR challenge we need to generate [; matrices,
each of size m x n and rank k. This is done as follows

1. Sample Gy € R™* as a Gaussian matrix (random matrix taking iid N(0,1)
entries), similarly sample Gy € R™*. Scale the columns of the random matrices
GyD and Gy D, for a diagonal matrix D with entries d; such that max;d; = A
and min; d; = 1, with the other d; linearly decaying diagonal entries from A to

10

2. Generate U € R™* VV ¢ R via QR decomposition GyD = UR and Gy D =
VR.

3. We generate k singular values as follows : for j € {1,...,k}, o(j) is set to be

Ve [ 5V
o(j) = p( \/E> (3)

!This allows us to control the so-called coherence [4],to tune the problem’s difficulty. The coherence
is defined as the largest leverage score; the leverage scores are the squared row norms of the leading
(in this case k) singular vectors. Incoherent matrices (e.g. randomly generated U, V') makes the subset
selection easy. On the other hand, coherent matrices are considered difficult as finding a good set of
indices is challenging; however, the benefit of doing so is enormous.




Note I stuck in a vk to stop the majority of o being 0 as k increased. Then we
take 3 random relabalings of the singular values : for i € {1,...,1} let m; be a
permutation on {1,...,k}, set 0;(j) = 0x,(j)- This gives l; matrices 3J; = diag(o;)
of singular values.

4. Generate [; matrices A; by singular value decompositions

A =Ux VT, (4)

5 Challenge Tracks

Within each challenge, there are various challenges tracks. These can range over in-
stance size and/or type. Currently, the challenge supports varying sizes of matrices
generated in the instances. We use the following tracks:

e Track 1:
e Track 2:
e Track 3:
e Track 4:
e Track 5:

The coherence A is fixed but could be varied in the future to adapt the difficulty.
Moreover we could introduce sparsity too. As well as the rank in proportion to the
matrix size.

6 Asymmetry Characteristics

To maintain the asymmetry characteristics essential to the TIG protocol the time an
algorithm takes to solve an instance must be significantly longer than the time it takes
to generate the instance plus the time it takes to verify a solution (i.e. compute the
error (2))) :

e For the instance generation, we construct [; matrices relatively quickly: we only
compute U,V once, and we do the matrix multiplications [; times.

e The calculation of the error ([2)) is straightforward, for a given target_rank, the

L k o\ 1/2
error HAl - SVDi,target,rankHF 1S given by (Ej:ltharget,rank aj
sum is from j = 1 + target_rank to j = k and the o; are those generated in (3)
(before any permutation is done).

, where note the

References

[1] Andrds Bodor, Istvdn Csabai, Michael W Mahoney, and Norbert Solymosi. rcur:
an r package for cur matrix decomposition. BMC bioinformatics, 13(1):103, 2012.

[2] Muhammad AA Abdelgawad, Ray CC Cheung, and Hong Yan. Efficient blind
hyperspectral unmixing framework based on cur decomposition (cur-hu). Remote
Sensing, 16(5):766, 2024.

[3] Michael W Mahoney, Mauro Maggioni, and Petros Drineas. Tensor-cur decomposi-
tions for tensor-based data. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 327-336, 2006.

[4] Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruft.
Fast approximation of matrix coherence and statistical leverage. Journal of Machine
Learning Research, 13(1):3475-3506, 2012.



	Introduction
	Problem Description
	The TIG Challenge
	Random Instance Generation
	Challenge Tracks
	Asymmetry Characteristics

