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1 Introduction

In the era of big data, analysts and practitioners routinely work with matrices con-
taining tens or even hundreds of thousands of rows and columns. This scale is com-
putationally taxing; however, the data can contain redundancy. Isolating the informa-
tive low-dimensional structure has therefore become a critical first step in any analy-
sis. Matrix factorizations-—and, in particular, low-rank decompositions and low-rank
approximation-—sit at the heart of modern data science and numerical analysis, pro-
viding the theoretical backbone for everything from principal-component analysis and
recommender systems to fast solvers in scientific computing. Within this landscape,
CUR approximations have gained popularity because they preserve the actual rows
and columns of the original matrix, yielding interpretable, sparsity-aware low rank ap-
proximations. CUR approximations have been used in a variety of areas including
genetic data [1], imaging [2], and recommender systems [3].

2 Problem Description

Given an m× n data matrix A, a low–rank CUR approximation approximates A by

A ≈ C U R,

where

• C ∈ Rm×c contains c actual columns of A;

• R ∈ Rr×n contains r actual rows of A;

• U ∈ Rc×r is called the linking matrix.

The rank of the CUR approximation is the rank of CUR.

3 The TIG Challenge

Currently there are constants li which still need to be fixed.

The TIG version of the CUR approximation problem is summarised in three steps:

• Step 1. Generating. Given the difficulty parameters m,n (outlined in Section
5) a rank k is fixed as k = ⌊min{m,n}/2⌋, l1 matrices A1, . . . Al1 are generated
(by the procedure outlined in Section 4), they are all rank k.

• Step 2. Solving. Three target ranks are chosen as target ranks = [ k
l2
, k
l3
, k
l4
]. The

TIG framework loops over all l1 matrices and all target ranks, at each iteration
i ∈ {1 . . . , l1}, target rank ∈ target ranks the Innovators submission algorithm is
called :

CURi,target rank ← Innovator Submission(Ai, target rank)

returning a CUR approximation of Ai with at most target rank columns and
target rank rows.
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• Step 3. Verification. For each i ∈ {1, 2, . . . , l1}, we score the CUR approxima-
tion (with rank target rank) as

κ∥Ai − SV Di,target rank∥F − ∥Ai − CURi,target rank∥F
(κ− 1)∥Ai − SV Di,target rank∥F

where SV Di,target rank is the target rank SVD approximation to Ai. Note that this
is of the form

baseline− solution

baseline− optimal
(1)

with baseline = κ·optimal. This a natural way to asses the quality of the solution,
if it is optimal we get a score of 1, if the solution is the same as the baseline we
get a score of 0. We will need to calibrate κ > 0.

We take the geometric mean of the scores

geom meani =

( ∏
target rank

κ∥Ai − SV Di,target rank∥F − ∥Ai − CURi,target rank∥F
(κ− 1)∥Ai − SV Di,target rank∥F

)1/3

,

We used geometric means over the target ranks since we note that the relative
error increases as the target rank is increased. The geometric means are then
averaged for the final quality score of the instance :

quality =
1

l1

l1∑
i=1

geom meani (2)

The asymmetric nature of the verification is discussed in Section 6.

4 Random Instance Generation

TIGs instance generation procedure generates matrices in Rm×n with low k-rank struc-
ture. It does this by constructing the matrices through a k-rank SVD decomposition.

For a single instance of the TIG CUR challenge we need to generate l1 matrices,
each of size m× n and rank k. This is done as follows

1. Sample GU ∈ Rm×k as a Gaussian matrix (random matrix taking iid N(0, 1)
entries), similarly sample GV ∈ Rn×k. Scale the columns of the random matrices
GUD and GVD, for a diagonal matrix D with entries dj such that maxj dj = ∆
and minj dj = 1, with the other dj linearly decaying diagonal entries from ∆ to
11.

2. Generate U ∈ Rm×k, V ∈ Rn×k via QR decomposition GUD = UR and GVD =
V R.

3. We generate k singular values as follows : for j ∈ {1, . . . , k}, σ(j) is set to be

σ(j) = exp

(
− l5
√
j√
k

)
(3)

1This allows us to control the so-called coherence [4],to tune the problem’s difficulty. The coherence
is defined as the largest leverage score; the leverage scores are the squared row norms of the leading
(in this case k) singular vectors. Incoherent matrices (e.g. randomly generated U, V ) makes the subset
selection easy. On the other hand, coherent matrices are considered difficult as finding a good set of
indices is challenging; however, the benefit of doing so is enormous.
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Note I stuck in a
√
k to stop the majority of σ being 0 as k increased. Then we

take l1 random relabalings of the singular values : for i ∈ {1, . . . , l1} let πi be a
permutation on {1, . . . , k}, set σi(j) = σπi(j). This gives l1 matrices Σi = diag(σi)
of singular values.

4. Generate l1 matrices Ai by singular value decompositions

Ai = UΣiV
T . (4)

5 Challenge Tracks

Within each challenge, there are various challenges tracks. These can range over in-
stance size and/or type. Currently, the challenge supports varying sizes of matrices
generated in the instances. We use the following tracks:

• Track 1:

• Track 2:

• Track 3:

• Track 4:

• Track 5:

The coherence ∆ is fixed but could be varied in the future to adapt the difficulty.
Moreover we could introduce sparsity too. As well as the rank in proportion to the
matrix size.

6 Asymmetry Characteristics

To maintain the asymmetry characteristics essential to the TIG protocol the time an
algorithm takes to solve an instance must be significantly longer than the time it takes
to generate the instance plus the time it takes to verify a solution (i.e. compute the
error (2)) :

• For the instance generation, we construct l1 matrices relatively quickly: we only
compute U, V once, and we do the matrix multiplications (4) l1 times.

• The calculation of the error (2) is straightforward, for a given target rank, the

error ∥Ai − SV Di,target rank∥F is given by
(∑k

j=1+target rank σ
2
j

)1/2
, where note the

sum is from j = 1 + target rank to j = k and the σj are those generated in (3)
(before any permutation is done).
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