Job Shop Scheduling Challenge

TIG Labs - Karim Tamssaouet

January, 2026

1 Introduction

The Flexible Job Shop Scheduling Problem (FJSP) is a generalization of the classical Job Shop
Problem (JSP) where operations can be processed on one of a set of eligible machines. This flex-
ibility allows for better workload balancing and resource utilization but significantly increases the
complexity of the problem, as it involves both assignment (routing) and sequencing decisions.

The FJSP is a relevant model for a wide variety of real-world manufacturing and service envi-
ronments. Applications found in the literature include manufacturing (e.g., semiconductor, glass,
pharmaceutical, printing) and service sectors such as healthcare and railway [1].

2 The TIG Challenge

Formally, the problem is defined by a set of n jobs J = Ji,...,J, and a set of m machines M =
My, ..., M,,. The problem is subject to the following standard assumptions:

1. Availability: All machines and jobs are available at time 0.

2. Non-preemption: Once an operation starts, it must be completed without interruption.
3. Machine capacity: Each machine can process at most one operation at a time.

The specific structure is defined as

e Each job J; consists of a finite sequence of operations O; 1, O; 2, O; 3... that must be processed
in the given order (precedence constraint).

e For each operation O; j, there is a set of eligible machines M; ; C M.
e Each operation is assigned to ate least one machine, i.e. M;; # @.
e The processing time of an operation O; ; depends on the selected machine.

The objective is to minimize the Makespan (Chyax) :

min Chax = min (max Ci) (1)

1<i<n

where C; is the completion time of the last operation of job J;.

While the makespan is the most extensively studied criterion in scheduling literature, it is rec-
ognized that it is not often the most relevant metric in practical settings [1]. However, due to
its dominance in academic research and the availability of comparable benchmarks, it remains the
primary metric for this challenge.

3 The Approach to Instance Generation

3.1 Background: Academic Benchmarks

To evaluate solution approaches, researchers have developed various sets of benchmark instances
over the decades [2,|1]. Well-known sets include those by [3] and [4], which extend classical job shop
instances by introducing different levels of operation flexibility. Additionally, [5] generated diverse
instances by varying flexibility levels and incorporating features such as reentrant flows and machine-
dependent processing times. While these benchmarks have driven algorithmic development, they
often lack the structural diversity required to model the broad range of practical industrial settings.

3.2 Method: Parameter-driven generation

To address the limitations of existing benchmarks, the TIG Challenge utilizes a generation method
that simulates the definition of a factory’s capabilities and product demand. Using a set of con-
trollable parameters, this method constructs instances layer by layer, from the physical shop floor
to the specific product recipes and orders.

3.3 Layer 1: Shop floor (Capabilities)

The foundation of the instance is the physical capability of the factory. A vocabulary of abstract
operation types (e.g., drilling, cutting, painting) is created. For each operation type, a subset
of machines is marked as eligible based on a flexibility parameter. This setup mimics real-world
constraints where certain tasks can only be performed by specific qualified resources. A base
processing time is also generated using a uniform distribution between 1 and 200, as in [6].

3.4 Layer 2: Routes (Structure)

Routes define the abstract sequence of operation types that products must follow. The complexity
of these sequences is controlled by the flow structure parameter. A value of 0.0 generates a strict
Flow Shop (a unique linear sequence), while a value of 1.0 generates a Job Shop (different random
permutation). Intermediate values create hybrid structures. Additionally, a reentrance parameter
controls the probability of a route looping back to a previously used operation type, modeling cyclic
flows common in different settings such as semiconductor fabrication.

3.5 Layer 3: Product specifications (Recipes)

A Product is a specific instantiation of a Route. For each step in a product’s route, a base processing
time is already defined. To capture realistic variations, a machine speed variability parameter is

applied. Depending on the setting, this parameter serves different objectives: it differentiates
between products that share the same route (creating unique recipes) and differentiates between
the performance of various machines (modeling speed/efficiency differences).

3.6 Layer 4: Job generation (Demand)

Finally, jobs are instantiated as orders for specific products. The variety of these orders is controlled
by the product mix ratio. To ensure the structural complexity of the routing is mean ingful, the
value of this parameter is set to be at least equal to the flow structure parameter. This ensures
that environments with complex, random routings (high flow structure) also have a sufficiently high
variety of product recipes.

4 Implementation of Instance Generation

4.1 The Setup

An instance is defined by the following parameters that control the size of the instance:
e The number of Jobs — n
e The number of Machines — m
e The number of Operation Types — ¢

Currently we fix these at 50 jobs, 30 machines, and 30 operation types. There is no strict require-
ment for these values to be consistent across all tracks. In the future they can be customized to
suit the specific problem track (Section [6). The resulting instances (1500-2000 operations) are
considered medium-to-large compared to existing JSP and FJSP benchmarks. While standard
benchmarks can have fewer operations, 7] proposed instances with up to 2000 operations.

Define:

e The jobs: J ={J1,...,Jn}
e The machines: M = {Mj,..., M}
e The operation types: T = {T1,...,T,}

As seen in the construction below the operation types get a base processing time sampled from
[1,2,...,200], there is no strong justification for this specific interval; other benchmarks use dif-
ferent ranges (e.g., [7] uses [1,2,...,99] and [5] use [10,11,...,100]). The most effective way to
validate the difficulty of a particular choice is to benchmark a CP solver against a sample of gen-
erated instances.

The following four main parameters play a key role in defining the type of problem being
generated, they are set by the track (see Section @

e Flexibility — controls how many machines can process each operation type.

e Flow structure — controls how similar or different the routes are across jobs.

e Product mix ratio — controls how many distinct products exist relative to the number of
jobs.

e Re-entrance level — controls how often routes revisit operation types.

We use pseudo code to describe the generation of a challenge instance.

4.2 Part 1: Shop Floor (Assigning Operation Types to Machines)

We define the shop floor by assigning each operation type a set of compatible machines. This
happens in two phases, first the base machines are assigned and then extra machines are assigned.
We also assign to each operation a base processing time.

Phase 1: Base Machine Assignment (Ensure At Least One Machine per Operation
Type)
e Operation types (up to the number of machines), machines are assigned from a shuffled list,

so each operation type gets a unique base machine when possible.

e If there are more operation types than machines, any remaining operation types are assigned
a base machine chosen at random from all machines.

e Each Operation Type is assigned a base processing time uniformly from [1,2,3,...,200].

INPUTS:

T = list of operation types, size = q

M = list of machines, size = m

OUTPUT:

base_machine[T] : a single base machine for each operation type

eligible[T] : set of eligible machines for each operation type (initially base only)
base_processing_time[T] : a single base processing time for each operation type.

shuffle(M) # random permutation

for i in 1..q:

if i <= m:
base_machine[T[i]] = M[i] # unique base machine when possible
else:

base_machine[T[i]] sample_uniform(M) # if more types than machines
eligible[T[i]] = { base_machine[T[i]] } # start compatibility set with base machine

base_processing_time[T[i]] = UniformInteger(1l, 200) #

Phase 2: Adding Flexibility (Extra Compatible Machines)

e For each operation type, a target total number of compatible machines is sampled from a
normal distribution centered at the global flexibility parameter.

e Since each operation type already has one base machine from Phase 1, the number of extra
machines to add is the sampled total minus 1 (clipped to be nonnegative).

e Additional machines are then selected uniformly at random from those not yet assigned to
that operation type, until the target total is reached (or all machines are used).

Here, target_total[t] is the desired total number of eligible machines for operation type ¢
(including the base machine), and

target_extra[t] = max(0, target_totallt] — 1)

is the number of extra machines added beyond the base.

INPUTS:

flexibility (global), sigma = 0.5

OUTPUT:

eligible[t] updated to include extra machines

for each operation type t in T:

Sample TOTAL number of eligible machines (including the base machine)
target_total[t] = abs(floor(Normal(flexibility, 0.5)))

Ensure at least 1 total (the base machine) and at most m total
target_total[t] = max(target_totallt], 1)
target_total[t] = min(target_total[t], m)

Convert to number of EXTRA machines to add beyond base
target_extra[t] = target_total[t] - 1 # in [0, m-1]

remaining = M \ eligible[t] # machines not already eligible

k = min(target_extral[t], size(remaining))
extras = sample_without_replacement (remaining, k)

eligible[t] = eligible[t] U extras

4.3 Part 2: Routes

Routes define the abstract sequence of operation types that products must follow. Routes are
created next, based on the flow structure and re-entrance parameters.

Number of Routes

The flow structure parameter determines how many distinct routes are created:

num_routes = max(1l, int(flow_structure * n))

A low flow structure (close to 0) leads to few routes (approaching a flow shop), whereas a high flow
structure (close to 1) leads to many distinct routes (approaching a pure job shop).

Base Routes (Before Re-entrance)
For each route:
1. Start from a list containing all operation types.
2. Randomly permute this list to obtain a sequence of length #op_types.

The result is that each route contains all operation types, but in random order.

OUTPUT:
routes[i] is a list of operation types (before re-entrance)

for i in 1..num_routes:
routes[i] = copy(T)
shuffle(routes[i]) # permutation of all operation types

For Flow Shop and Hybrid Flow Shop environments, it is standard for all jobs to include all
operation types. While this is not always true for practical Job Shop environments, most academic
JSP benchmarks assume each job visits every machine. At this stage of development we adhere
to standard academic convention of including all operation types in each route, however this is
something that could be introduced via the a new track in the future.

Re-entrance (Adding Repeated Operations)

Re-entrance is then applied to each route according to the re-entrance level. The following process
is applied to each route:

e We scan the route from the second position onwards (step index > 2).

e We continue scanning until we reach the current end of the route (so insertions can increase
the total number of scan steps).

e At each position:

— With probability reentrance_level, we insert a duplicate operation at this position.

— The duplicate operation is chosen uniformly at random from the operations that appeared
earlier in the route (before the current position). Repeats do not increase selection
probability.

— The chosen duplicate is inserted at the current position, and all subsequent operations
are shifted one position forward.

This process creates loops in the route, where a job may return to stages it has already visited.

INPUT:

reentrance_level in [0,1]

OUTPUT:

routes updated in-place (route length may increase)

for each route r in routes:

j=2
while j <= length(r): # IMPORTANT: current end, not original end

if Bernoulli(reentrance_level) == 1:

seen_types = distinct_set(r[1..(j-1)]) # distinct types only
dup_type = sample_uniform(seen_types)

insert r at position j with dup_type # shifts r[j..end] right by 1

i=i+t

4.4 Part 3: Products

A Product is a specific instantiation of a Route. Products are defined based on the productmix_ratio €
[flow_structure, 1] and the routes from Part 2.

Number of Products

The number of distinct products is defined by the number of jobs and the product mix ratio

num_products = max(1l, int(product_mix_ratio * n))

Creating Each Product
A. Route Assignment
e Each product is assigned a unique route until all routes are exhausted.

e Any remaining products are then assigned a route sampled uniformly at random from all
routes.

INPUTS:

num_products

routes : list of available routes, size = num_routes
OUTPUT:

product_route[p] : assigned route for each product

shuffle(routes) # random permutation of routes
num_routes = size(routes)

for p in 1..num_products:

if p <= num_routes:

product_route[p] = routes[p] # unique route when possible

else:

product_route[p] = sample_uniform(routes) # reuse routes after exhaustion

B. Generating Processing Times (the “Recipe”) We treat each position in the product
route as a distinct operation instance. Even if two instances have the same operation type (e.g. due
to re-entrance), they may have different processing times. This is a deliberate design choice. To
define the processing times for each operation in the product we do:

1. Look up the operation type and its set of eligible machines (from Part 1).
2. For each eligible machine:
e Sample a speed factor from

uniform(MIN_SPEED_FACTOR, MAX_SPEED_FACTOR)
(e.g. between 0.8 and 1.2).

e Compute the processing time as

Ptime = max(l, int(base_processing_time X speed,factor)).

e Store this as step_data[machine_id] = ptime.

INPUTS:

base_processing_time[typel

eligible[type] = set of machines compatible with that type
min_speed_factor = 0.8, max_speed_factor = 1.2

OUTPUT:

recipe [p] [op_index] [machine] = processing time

H OB H H O H

for p in 1..num_products:

r = product_route[p] # list of operation TYPES, after re-entrance
recipe[p] = empty_map()

for k in 1..length(r): # k identifies the OPERATION INSTANCE in this product
t = r[k] # operation type at position k
for each machine m in eligible[t]:
speed_factor = Uniform(min_speed_factor, max_speed_factor)
p_time = int(base_processing_time[t] * speed_factor)
p_time = max(1l, p_time)

p_time = min(p_time, 200)

recipe[p] [k] [m] = p_time

product[p] = (route = r, recipe = recipelp])

4.5 Part 4: Job Creation (Demand)

Finally, we generate the actual jobs (demands). Each job is a demand for one of the products and
inherits that product’s route and recipe.

Job Generation

For each job we create a Job object with:
e a unique job ID j_id, and

e a reference product chosen according to the assignment rule below.

What Each Job Contains
Each job inherits from its product:

e the route (sequence of operation types; each position in the route is treated as an operation
instance), and

e the recipe (processing times for each operation on each eligible machine).

Thus, each job is a single demand instance for a particular product type.

Distribution of Jobs Over Products

e The first num_products jobs are assigned deterministically: job i is assigned to product ¢ for
t=1,...,num_products. This guarantees that every product appears at least once.

e The remaining (num_jobs — num_products) jobs are assigned by sampling products indepen-
dently and uniformly at random (with replacement).

e Since product_mix_ratio < 1.0, there are fewer products than jobs, so many jobs share the
same product definition, creating clusters of jobs with identical route and processing-time

structure.
INPUTS:
products[1..num_products]
num_jobs
OUTPUT:
jobs[i] = (job_id, chosen_product, route, recipe)

for i in 1..num_jobs:

if i <= num_products:
chosen_product = products[i] # deterministic coverage
else:
chosen_product = sample_uniform(products) # random remainder

jobs[il.job_id = i

jobs[i] .product = chosen_product
jobs[i] .route = chosen_product.route
jobs[i] .recipe = chosen_product.recipe

5 Asymmetric Verification

Verification is computationally trivial: given a proposed schedule, checking all constraints (machine
eligibility, precedence, and machine capacity) requires only simple comparisons and sorting opera-
tions, which run in polynomial time O(nlogn), where n is the number of operations.

Solving, by contrast, is NP-hard: finding an optimal (or even good) schedule requires searching
an exponentially large solution space, as each operation must be assigned both a machine (from its
eligible set) and a start time, with choices for one operation affecting feasibility and quality of all
subsequent decisions.

5.1 Solution Format
A valid solution consists of a schedule for all jobs:

e job_schedule: a vector of schedules, one per job.
e job_schedule[i] contains the schedule for job i.
e Each job schedule is a sequence of pairs (machine_id, start_time).

e There is exactly one such pair for each operation in the job, in route order.

5.2 Verification Procedure

The solution verification procedure (evaluate makespan) checks the following constraints in order.

1. Job Count Validation
e The solution must contain schedules for exactly num_jobs jobs.

e Violation: an error is returned if the job count does not match.

2. Product-Specific Operation Count
e Each job ¢ is associated with a product that defines a fixed route length.

e job_schedule[i] must contain exactly one scheduled operation for each operation instance
in that product’s route.

e Violation: an error is returned if the operation count does not match the product’s route
length.

3. Machine Eligibility
e Each operation instance k of a job can only be performed on a specified set of eligible machines.
e The assigned machine_id for operation & must belong to this eligible set.
e Eligible machines and processing times are defined in product.recipe [k] [machine_id].

e Violation: an error is returned if an ineligible machine is assigned.

10

4. Precedence Constraints (Job-Level)
e Operations within a job must respect their sequential order.
e Operation k may only start after operation k& — 1 has completed.

e Formally,
start_time(k) > start_time(k — 1) + processing_time(k — 1),

where processing times are taken from the job’s inherited recipe.

e Violation: an error is returned if an operation starts before the previous one completes.

5. Machine Capacity Constraints
e Each machine can process at most one operation at a time.

e No two operations assigned to the same machine_id may overlap in time.

For any two operations on the same machine with intervals [s1, f1) and [sq, f2), one of the
following must hold:

sp > fi or s12> fa.

Verification method:

— Collect all operations assigned to each machine_id.
— Sort them by start_time.

— Check that consecutive operations do not overlap.

Violation: an error is returned if overlapping operations are detected on any machine.

5.3 Solution Quality Calculation

If all constraints are satisfied, the makespan is calculated as the maximum completion time over
all jobs.

Solution quality is measured using the baseline score. Let Cl,se denote the baseline makespan
and C' the submitted solution’s makespan. The quality score is:

Cbase -C
CVbase .

better_than_baseline =

Higher scores correspond to stronger performance relative to the baseline. This incentivizes
meaningful algorithmic innovation and consistent performance improvements. The baseline algo-
rithm is based on dispatching rules, selecting operations by Most Work Remaining and assigning
machines via Earliest End Time.

11

6 Challenge Tracks

The challenge comprises five tracks, each representing a specific special case of the Flexible Job Shop
Scheduling Problem (FJSP). Across all tracks, the following parameters are fixed: the number of
jobs is set to 50, the number of machines to 30, the number of operation types to 30, the base
processing times are generated uniformly in the range [1,200], and the machine speed factors are
drawn uniformly from the interval [0.8,1.2].

Track Flow Structure Flexibility Mix Ratio Reentrance
1. Flow Shop 0.0 1.0 0.5 0.2
2. Hybrid Flow Shop 0.0 3.0 0.5 0.2
3. Job Shop 0.4 1.0 1.0 0.0
4. FISP (Medium) 0.4 3.0 1.0 0.2
5. FJSP (High) 1.0 10.0 1.0 0.0

Table 1: Parameter configurations for the five challenge tracks.

Table [1| details the five challenge tracks, each designed to test specific algorithmic capabilities
through distinct parameter combinations. Track 1 (Flow Shop) and Track 2 (Hybrid Flow Shop)
both enforce a rigid, unidirectional flow structure (0.0) with low product mix (0.5), but differ in
flexibility: Track 1 allows only one machine per operation, testing basic sequencing decisions, while
Track 2 increases flexibility to 3.0, requiring effective load balancing across parallel machines.

Track 3 (Job Shop) introduces routing complexity through a moderate flow structure value
(0.4) and a high product mix (1.0), while maintaining strict machine assignments (flexibility 1.0),
thereby focusing primarily on sequencing under diverse routing constraints. Track 4 (Flexible Job
Shop — Medium) represents a more realistic manufacturing environment, combining moderate flow
structure (0.4) and flexibility (3.0) and allowing for re-entrant flows. Finally, Track 5 (Flexible
Job Shop — High) simulates a highly chaotic setting with a completely random flow structure (1.0)
and extreme flexibility (10.0), shifting the dominant challenge from sequencing to optimal load
balancing across a vast and complex search space.

References

[1] Stéphane Dauzeére-Péreés et al. “The flexible job shop scheduling problem: A review”. In: Fu-
ropean Journal of Operational Research 314.2 (2024), pp. 409-432.

[2] Dennis Behnke and Martin Josef Geiger. “Test instances for the flexible job shop scheduling
problem with work centers”. In: (2012).

[3] Paolo Brandimarte. “Routing and scheduling in a flexible job shop by tabu search”. In: Annals
of Operations research 41.3 (1993), pp. 157-183.

[4] Johann Hurink, Bernd Jurisch, and Monika Thole. “Tabu search for the job-shop schedul-
ing problem with multi-purpose machines”. In: Operations-Research-Spektrum 15.4 (1994),
pp- 205-215.

[5] Stéphane Dauzere-Péres and Jan Paulli. “An integrated approach for modeling and solving
the general multiprocessor job-shop scheduling problem using tabu search”. In: Annals of
Operations research 70.0 (1997), pp. 281-306.

12

Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. “Benchmarks for shop scheduling problems”.
In: European Journal of Operational Research 109.1 (1998), pp. 137-141.

Eric Taillard. “Benchmarks for basic scheduling problems”. In: european journal of operational
research 64.2 (1993), pp. 278-285.

13

	Introduction
	The TIG Challenge
	The Approach to Instance Generation
	Background: Academic Benchmarks
	Method: Parameter-driven generation
	Layer 1: Shop floor (Capabilities)
	Layer 2: Routes (Structure)
	Layer 3: Product specifications (Recipes)
	Layer 4: Job generation (Demand)

	Implementation of Instance Generation
	The Setup
	Part 1: Shop Floor (Assigning Operation Types to Machines)
	Part 2: Routes
	Part 3: Products
	Part 4: Job Creation (Demand)

	Asymmetric Verification
	Solution Format
	Verification Procedure
	Solution Quality Calculation

	Challenge Tracks

